Rotor Angle and Voltage Stability Analysis with Fault Location Identification on the IEEE 9 Bus System

Author:

Khan H. F.,Hanif A. H.,Anwar N.

Abstract

Transient stability is very imperative in multi-machine interconnected power systems in order to scrutinize and analyze the system’s performance and response. Rotor angle stability and voltage stability are studied in this paper. By applying three-phase symmetrical faults, the transient stability of the IEEE 9 bus system is studied. A characteristic double hump is analyzed in the response of the generator, which is nearer to the fault location. By analyzing the characteristic double hump, the fault location in a large interconnected power system can be determined. It is shown that, as the fault is cleared, the system takes some finite time to return to its prior state. IEEE 9 bus system is chosen as a test system, which standard parameters. MATLAB Simpower System toolbox is used for load flow and transient stability analysis.

Publisher

Engineering, Technology & Applied Science Research

Reference31 articles.

1. S. A. Nasar, F. C. Trutt, Electric power systems, CRC Press, 1998

2. Y. Zhong, S. Huang, D. Luo, “Stabilization and speed control of a permanent magnet synchronous motor with dual-rotating rotors”, Energies, Vol. 11, No. 10, Article ID 2786, 2018

3. E. A. Androulidakis, A. T. Alexandridis, H. E. Psillakis, D. P. Agoris, “Challenges and trends of restructuring power systems due to deregulation”, 5th WSEAS International Conference on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005

4. H. H. Alhelou, M. E. H. Golshan, E. H. Forushani, A. S. A. Sumaiti, P. Siano, “Decentralized fractional order control scheme for LFC of deregulated nonlinear power systems in presence of EVs and RER”, International Conference on Smart Energy Systems and Technologies, Seville, Spain, September 10-12, 2018

5. S. K. Mahapatro, “Transient stability analysis in interconnected power system for power quality improvement”, International Journal of Engineering Research and Technology, Vol. 2, No. 2, pp. 1-12, 2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability Analysis and Voltage Control in the Power System Based on the Hybrid Automata Model;International Transactions on Electrical Energy Systems;2023-07-22

2. Assessment of Frequency and Rotor Angle Stability of Integrated Nepal Power System;2023 International Conference on Future Energy Solutions (FES);2023-06-12

3. Multi-Goal Feature Selection Function in Binary Particle Swarm Optimization for Power System Stability Classification;Engineering, Technology & Applied Science Research;2023-04-02

4. Exploring the Enhanced Performance of a Static Synchronous Compensator with a Super-Capacitor in Power Networks;Engineering, Technology & Applied Science Research;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3