Design of an Adaptive e-Learning System based on Multi-Agent Approach and Reinforcement Learning

Author:

El Fazazi H.,Elgarej M.,Qbadou M.,Mansouri K.

Abstract

Adaptive e-learning systems are created to facilitate the learning process. These systems are able to suggest the student the most suitable pedagogical strategy and to extract the information and characteristics of the learners. A multi-agent system is a collection of organized and independent agents that communicate with each other to resolve a problem or complete a well-defined objective. These agents are always in communication and they can be homogeneous or heterogeneous and may or may not have common objectives. The application of the multi-agent approach in adaptive e-learning systems can enhance the learning process quality by customizing the contents to students’ needs. The agents in these systems collaborate to provide a personalized learning experience. In this paper, a design of an adaptative e-learning system based on a multi-agent approach and reinforcement learning is presented. The main objective of this system is the recommendation to the students of a learning path that meets their characteristics and preferences using the Q-learning algorithm. The proposed system is focused on three principal characteristics, the learning style according to the Felder-Silverman learning style model, the knowledge level, and the student's possible disabilities. Three types of disabilities were taken into account, namely hearing impairments, visual impairments, and dyslexia. The system will be able to provide the students with a sequence of learning objects that matches their profiles for a personalized learning experience.

Publisher

Engineering, Technology & Applied Science Research

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive E-Learning Environments: A Methodological Approach to Identifying and Integrating Multi-layered Learning Styles;SN Computer Science;2024-08-08

2. Job-Profile Matching with CTN and MADRL with GEABB: A Recommender System;2024 16th International Conference on Computer and Automation Engineering (ICCAE);2024-03-14

3. Hybrid Models of Machine learning based Multi-Agent Coordination for Optimized Course Selection in E-Learning Environment;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

4. Unpacking Adaptive Online Learning: A Detailed Literature Review;Lecture Notes in Networks and Systems;2024

5. Improving the Effectiveness of E-learning Videos by leveraging Eye-gaze Data;Engineering, Technology & Applied Science Research;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3