Experimental Investigation and Control of a Hybrid (PV-Wind) Energy Power System

Author:

Mustafa G.,Baloch M. H.,Qazi S. H.,Tahir S.,Khan N.,Mirjat B. A.

Abstract

The most essential infrastructure of today’s modern civilization is the energy system. A new energy revolution is ongoing worldwide in understanding the affordability, reliability, and sustainability of energy supply. One of the major challenges and opportunities considered in this energy revolution is the integration of the energy system. The varying dynamics of renewable energy production and the environmental conditions between the different energy sources are the major reasons for this challenge. Wind and solar energies are considered the best renewable sources and the foremost substitute sources for power generation. These energies are playing a vital role as alternates of nuclear energy and fossil fuels. Electricity is generated through wind energy conversion systems and photovoltaic (PV) cells. These technologies are clean and environmentally friendlier than non-renewable energies. A hybrid PV-wind generation system is more effective and consistent than a single-source system because the solar system cannot work at night or in cloudy weather while the wind speed is variable. The current study proposes an experimental-based analysis. The hardware used is the Squirrel Cage Induction Generator (SCIG) and solar panels. A boost converter is added for Maximum Power Point Tracking (MPPT) at variable wind speed and available sunlight.

Publisher

Engineering, Technology & Applied Science Research

Reference14 articles.

1. [1] S. P. LakshmanRao, C. P. Kurian, B. K. Singh, and V. Athulya Jyothi, "Simulation and Control of DC/DC Converter for MPPT Based Hybrid PV/Wind Power System," International Journal of Renewable Energy Research, vol. 4, no. 3, pp. 801-809, Sep. 2014.

2. [2] Y. S. Rao, A. J. Laxmi, and M. Kazeminehad, "Modeling and Control of Hybrid Photovoltaic Wind Energy Conversion System," International Journal of Advances in Engineering & Technology, vol. 3, no. 2, pp. 192-201, May 2012.

3. [3] N. A. Ahmed, A. K. Al-Othman, and M. R. AlRashidi, "Development of an efficient utility interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage regulation," Electric Power Systems Research, vol. 81, no. 5, pp. 1096-1106, May 2011.

4. [4] S. Mahesar et al., "Power Management of a Stand-Alone Hybrid (Wind/Solar/Battery) Energy System: An Experimental Investigation," International Journal of Advanced Computer Science and Applications, vol. 9, no. 6, Jan. 2018.

5. [5] M. Muralikrishna and V. Lakshminarayana, "Hybrid (solar and wind) energy systems for rural electrification," ARPN Journal of Engineering and Applied Sciences, vol. 3, no. 5, pp. 50-58, Oct. 2008.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3