Rainfall Analysis for Hyderabad and Nawabshah, Sindh, Pakistan

Author:

Mahessar A. A.ORCID,Qureshi A. L.,Sadiqui B.,Kori S. M.,Mukwana K. C.,Leghari K. Q.

Abstract

The climatic change has a visible impact in recent abnormal weather events, such as Pakistan’s intensification of the hydrological cycle with changing precipitation pattern, water availability periods, and weather-induced natural disasters. The rainfall flush flood of 2010 alone displaced millionσ of people and damaged properties in just one stroke. The next year, the shocking rainfall flood of 2011 in Sindh, only underscored the enormity of the challenge posed by climate change. The current paper presents the analysis carried out for one-day annual maximum rainfall for Hyderabad and Nawabshah cities, Sindh, Pakistan for the period from 1961 to 2011 using STATISTICA Software for interpolating and forecasting the rainfall time series. The maximum values of observed rainfall were 250.70mm and 256.30mm, while the minimum values were 3.0mm and 0.0mm for Hyderabad and Nawabshah respectively, while the mean of fifty-one (51) years of rainfall data is 51.96mm and 45.3 mm and the computed standard deviations were 42.693mm and 43.896mm respectively. The difference between the mean and standard deviation of one-day maximum rainfall is small, which showed the consistency of the data. The polynomial trend curved lines exhibited fluctuations in the rainfall data, which indicates a continual change in rainfall behavior. Hence, the rainfall data are subjected to a moving mean smoothing with a duration shorter than 3 years. Through these trends, the future one-day annual maximum rainfall can be predicted. The correlation of one-day annual maximum rainfall between Hyderabad and Nawabshah cities had R2 of 0.973. The computed results of return periods of 3, 5, and 10 years for one-day annual maximum rainfall for both cities revealed that the rainfall values for Hyderabad are higher.

Publisher

Engineering, Technology & Applied Science Research

Reference18 articles.

1. [1] M. A. Mellieres and C. Marechal, Climate Change: Past, Present, and Future. John Wiley & Sons, 2015.

2. [2] A. Mahessar, A. Qureshi, G. Dars, and M. Solangi, "Climate Change Impacts on Vulnerable Guddu and Sukkur Barrages in Indus River, Sindh," Sindh University Research Journal (Science Series), vol. 49, no. 1, pp. 137-142, Jan. 2019.

3. [3] A. A. Mahessar et al., "Flash Flood Climatology in the Lower Region of Southern Sindh," Engineering, Technology & Applied Science Research, vol. 9, no. 4, pp. 4474-4479, Aug. 2019.

4. [4] V. Chow, D. Maidment, and L. Mays, Applied Hydrology, 1st ed. New York, NY, USA: McGraw-Hill, 1988.

5. [5] S. Das, S. V. Singh, E. N. Rajagopal, and R. Gall, "Mesoscale Modeling for Mountain Weather Forecasting Over the Himalayas," Bulletin of the American Meteorological Society, vol. 84, no. 9, pp. 1237-1244, Sep. 2003.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3