Author:
Boubaker Sahbi,Jouili Khalil
Abstract
Access to energy is critical for improving living conditions in remote and isolated areas. The integration of Renewable Energy Sources (RESs) and energy storage technologies becomes critical for sustainable energy supply, particularly in distant locations without access to the main grid. The isolated operation of RESs may face numerous problems in operation and reliability, hence, investing Direct Current Microgrids (DCMGs) can be adopted as an effective solution allowing Renewable Energy (RE) integration and contributing to efficient system operation. However, several issues related to monitoring, control, and diagnosis may be encountered under such conditions. The control of a PV-based RE system and a battery/ supercapacitor-based energy storage system in a DCMG is examined in this research. For this aim, a hierarchical control method is proposed. The proposed approach is based on a Sliding Mode Controller (SMC) and the Lyapunov stability theory. To manage load and energy generation, an energy management system based on fuzzy logic was designed. Global asymptotic stability has been demonstrated using Lyapunov stability analysis. The overall system behavior, including the proposed DCMG and controllers, was simulated. The results indicated that the system performs well under varying output and loads.
Publisher
Engineering, Technology & Applied Science Research