On the Nature of Superconducting Precursors in Bi-Pb-Sr-Ca-Cu-O Compositions Fabricated by Hot Shock Wave Consolidation Technology
-
Published:2018-06-19
Issue:3
Volume:8
Page:3032-3037
-
ISSN:1792-8036
-
Container-title:Engineering, Technology & Applied Science Research
-
language:
-
Short-container-title:Eng. Technol. Appl. Sci. Res.
Author:
Chigvinadze J.,Ashinov S.,Mamniashvili G.,Donadze G.,Peikrishvili A.,Godibadze B.
Abstract
In this paper, the possibility of critical temperature increasing of superconducting precursor Tс and the current bearing capacity in samples of Bi-Pb-Sr-Ca-Cu-O superconducting system fabricated using hot shock wave consolidation (HSWC) technology and investigated by the vibrating torsional magnetometry method, was studied. The advantage of HSWC technology over the traditional technologies of superconducting composites synthesis is that the high-density materials are made from the Bi-Pb-Sr-Ca-Cu-O superconducting system. After the action of explosive wave the superconductivity is retained. After the explosion a pronounced texture is formed indicating the creation of efficient pinning centers and thus, the increase of current-carrying ability of the obtained material. The critical temperature of potential superconducting precursor Tc of transition to superconducting state increased from Tc=107K for starting sample to Tc=138K, using the HSWC technology for synthesis of samples in range of pressures from P=5GPa up to P=12GPa.
Publisher
Engineering, Technology & Applied Science Research
Reference12 articles.
1. G. C. Yu, D.-D. Xia, D. Pelc, R.-H. He, N.-H. Kaneko, T. Sasagawa, Y. Li, X. Zhao, N. Barišić, A. Shekhter, M. Greven, “Universal superconducting precursor in the cuprates”, arXiv:1710.10957, 2017 2. J. G. Chigvinadze, J. V. Acrivos, S. M. Ashimov, D. D. Gulamova, G. J. Donadze, “Superconductivity at Т≈200 K in bismuth cuprates synthesized using solar energy”, arXiv:1710.10430v1, 2017 3. D. D. Gulamova, D. G. Chigvinadze, J. V. Acrivos, D. E. Uskenbaev, “Obtaining and studying the properties of high-temperature superconductors of homologous series of Bi1.7Pb0.3Sr2Can-1CunOy (n=4-9), under influence of solar energy”, Applied Solar Energy, Vol. 48, pp. 135-139, 2012 4. S. M. Ashimov, Dzh. G. Chigvinadze, “A torsion balance for studying anisotropic magnetic properties of superconducting materials”, Instruments and Experimental Techniques, Vol. 45, No. 3, pp. 431-435, 2002 5. T. Gegechkori, G. Mamniashvili, A. Peikrishvili, V. Peikrishvili, B. Godibadze, “Using Fast Hot Shock Wave Consolidation Technology to Produce Superconducting MgB2”, Engineering, Technology & Applied Science Research, Vol. 8, No. 1, pp. 2374-2478, 2018
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|