An Ensemble Method for EEG-based Texture Discrimination during Open Eyes Active Touch

Author:

Miltiadous AndreasORCID,Aspiotis Vasileios,Peschos Dimitrios,Tzimourta Katerina D.,Abosaleh Al Husein Sami,Giannakeas Nikolaos,Tzallas AlexandrosORCID

Abstract

Touch sensation is a key modality that allows humans to understand and interact with their environment. More often than not, touch sensation depends on vision to accumulate and validate the received information. The ability to distinguish between materials and surfaces through active touch consists of a complex of neurophysiological operations. To unveil the functionality of these operations, neuroimaging and neurophysiological research tools are employed, with electroencephalography being the most used. In this paper, we attempt to distinguish between brain states when touching different natural textures (smooth, rough, and liquid). Recordings were obtained with a commercially available EEG wearable device. Time and frequency-based features were extracted, transformed with PCA decomposition, and an ensemble classifier combining Random Forest, Support Vector Machine, and Neural Network was utilized. High accuracy scores of 79.64% for the four-class problem and 89.34% for the three-class problem (Null-Rough-Water) were accordingly achieved. Thus, the methodology's robustness indicates its ability to classify different brain states under haptic stimuli.

Publisher

Engineering, Technology & Applied Science Research

Reference63 articles.

1. G. Robles-De-La-Torre, "The importance of the sense of touch in virtual and real environments," IEEE MultiMedia, vol. 13, no. 3, pp. 24–30, Jul. 2006.

2. C. Reed and M. Ziat, "Haptic Perception: From the Skin to the Brain," in Reference Module in Neuroscience and Biobehavioral Psychology, Amsterdam, Netherlands: Elsevier, 2018, pp. 545–556.

3. A. Gallace and C. Spence, "Touch and the body: The role of the somatosensory cortex in tactile awareness," Psyche: An Interdisciplinary Journal of Research on Consciousness, vol. 16, no. 1, pp. 30–67, 2010.

4. M. A. Symmons, B. L. Richardson, D. B. Wuillemin, and G. H. VanDoorn, "Active versus passive touch in three dimensions," in First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference, Pisa, Italy, Mar. 2005, pp. 108–113.

5. C. Simoes‐Franklin, T. A. Whitaker, and F. N. Newell, "Active and passive touch differentially activate somatosensory cortex in texture perception," Human Brain Mapping, vol. 32, no. 7, pp. 1067–1080, Jul. 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3