Author:
Hussain Laith N.,Hamood Mohammed J.,Al-Shaarbaf Ehsan A.
Abstract
Adding steel fibers to a concrete matrix enhances the shear capacity of reinforced concrete beams. A comprehensive understanding of this phenomenon is essential to evaluate engineering designs accurately. The shear capacity of Steel Fiber Reinforced Concrete (SFRC) beams is affected by many parameters, such as the ratio of the shear span to the effective depth of the SFRC beam, the compressive strength of concrete, the longitudinal reinforcement ratio, volume fraction, aspect ratio, and the type of fibers. Therefore, to cover the influence of these parameters on the shear capacity of SFRC beams, 91 beams from previous studies, divided into 10 groups, were considered in the current study. Two approaches have been used to predict the shear capacity of SFRC beams. The first approach used 7 predicting equations derived from previous studies and the second one used finite element analysis (ANSYS software) to simulate the 91 beams. Despite the many approaches to simulate the structure elements, there is no reliable approach able to simulate satisfactorily 91 SFRC beams as this study does. The log file of ANSYS software was used to simulate and calculate the shear strength capacity of the beams. The results show a reasonable agreement with the experimental tests. The extracted results were much closer and more realistic than those obtained by the predicting equations. Also, the χ factor (squared value of experimental shear capacity to the predicted shear capacity) of the ANSYS software results is 97%, while the closest proposed equation gives 91%.
Publisher
Engineering, Technology & Applied Science Research
Reference37 articles.
1. ACI Committee 544, ACI PRC-544.5-10: Report on the Physical Properties and Durability of Fiber-Reinforced Concrete. American Concrete Institute, 2010.
2. ACI Committee 544, ACI PRC-544.4-18: Guide to Design with Fiber-Reinforced Concrete. American Concrete Institute, 2018.
3. ACI Committee 544, 544.1R-96 - Report On Fiber-Reinforced Concrete. American Concrete Institute, 2001.
4. W. A. Labib, "Evaluation of hybrid fibre-reinforced concrete slabs in terms of punching shear," Construction and Building Materials, vol. 260, Nov. 2020, Art. no. 119763.
5. V. Sathish Kumar, N. Ganesan, and P. V. Indira, "Shear Strength of Hybrid Fibre-Reinforced Ternary Blend Geopolymer Concrete Beams under Flexure," Materials, vol. 14, no. 21, Jan. 2021, Art. no. 6634.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献