Effect of Fire Exposure on the Properties of Self-Compacting Concrete reinforced by Glass Fibers

Author:

Aboud Rawaa K.,Awad Hadeel K.,Mohammed Shatha D.

Abstract

The optimal design of any structural elements requires examining all environmental risks, emergency accidents, and standard load cases. Exposure to fire is one of the most common safety threats. Nowadays wide developments are achieved in the field of concrete technology, therefore, experimental and theoretical investigations should be performed on the characteristics of such developed materials under different loading conditions. This study investigates the impact of fire exposure on the mechanical characteristics of self-compacting concrete, specifically compressive and tensile strength, modulus of elasticity, and stress-strain relation. The adopted fire exposure consisted of six steady-state temperatures (300, 400, 500, 600, 700, and 800°C) for one hour and a sudden cooling method. Four glass fiber volume fractions were adopted: 0, 0.5, 1, and 1.5%. The glass fiber volume fractions considered (0.5-1.5%) improved the mechanical properties investigated. Two states were detected for the effect of fire exposure. The effect of fire exposure was inversely proportional to fiber content in burning temperatures of 300-700°C, while the reduction in mechanical properties of 1.5% fiber content was greater than those of 0.5 and 1% when the temperature increased to 800°C. Furthermore, the addition of glass fiber changed the brittle mode stress-strain relation to semi-ductile for the non-burned and burned up to 600°C specimens, whereas a brittle behavior was detected when the temperature increased above 600°C. In general, a similar effect was noticed for all the glass fiber ratios considered regarding the slope of the stress-strain linear stage compared to the non-burned specimens, which was more salient when the burning temperature increased.

Publisher

Engineering, Technology & Applied Science Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3