Effects of Concrete Substrate Condition on Fiber-Reinforced Composite Strength Properties

Author:

Kiiru Joseph,Kabubo Charles,Sanewu Fundi

Abstract

This study determined the effects of concrete substrate conditions on the strength properties of fiber-reinforced composites through experimental research. The method of concrete surface preparation and moisture conditions were considered crucial parameters that have a significant impact on Fiber-Reinforced Composite (FRC) strength properties. Four different concrete surfaces were examined: grinded (CSP 2), sanded (CSP 3), scabbed (CSP 8), and unprepared (CSP 1), all under various moisture conditions: dry concrete substrate, saturated surface dry concrete substrate, and wet concrete substrate. A mix design conforming to the C25 grade concrete was formulated, cured in water for 7 and 28 days to achieve the desired design strength values. The dry surface specimens were cured in the air for at least 24 hr before subsequent preparations, the wet surface specimens were cured in water for at least 24 hr, while the saturated surface dry specimens were cured in water for 24 hours and then removed from the water and cured in the air for 1 hr. The prepared samples were carbon-wrapped with unidirectional SikaWrap-300 C and Sikadur 300 resin and then subjected to a uniaxial compressive strength test until failure after 24 hr of curing using a load of 0.2 MPa/sec. The collected data showed that the surface roughness of the CSP 8 under wet moisture conditions exhibited the best bond strength due to the increase in surface area for adhesive bond contact, while the wet substrate condition increased hydration on the adhesive side of the interface, which directly contributed to the increase in bond strength. All substrate conditions demonstrated cohesive cracking of the concrete substrate leading to displacement of the FRP-concrete interface before FRP rapture.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3