Mitigation of Nonlinear Effects using Machine Learning in Coherent Optical Access Networks

Author:

Escobar Pérez AlejandroORCID,Arroyave Giraldo KarenORCID,Lopera Cortés Jhon AndersonORCID,Granada Torres Jhon JamesORCID

Abstract

Introduction/Context: The use of coherent detection jointly with high-level modulation formats such as 16 and 64-QAM seems to be a convenient strategy to increment capacity of future optical access networks. However, coherent detection requires high complexity digital signal processing to mitigate different impairments. Objective: Mitigate signal distortions using nonsymmetrical demodulation techniques based on Machine Learning (ML) algorithms. Methodology: First, a single channel Nyquist m-QAM system at 28 and 32 Gbps was simulated in VPIDesignSuite software. Then, different signals modulated at 16 and 64-QAM were generated with different laser linewidth, transmission distances and launch powers. Two ML algorithms were implemented to carry out the demodulation of the generated signals. The performance of the algorithms was evaluated using the bit error rate (BER) in terms of different system parameters as laser linewidth, transmission distance, launch power and modulation format. Results: The use of ML allowed gains up to 2 dB in terms of optical signal-to-noise ratio at a BER value of  for 16-QAM and 1.5 dB for 64-QAM. Also, the use of ML showed that it is possible to use a lower cost laser (100 kHz linewidth vs 25 kHz) with a better BER performance than using conventional demodulation. Conclusions: We showed that the use of both algorithms could mitigate nonlinear effects and could reduce computational complexity for future optical access networks.

Publisher

Corporation Universidad de la Costa, CUC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3