Effort Estimation in Agile Software Development: A Systematic Map Study

Author:

Piñeros Rodríguez Camilo Andrés,Sierra Martinez Luz Marina,Peluffo Ordoñez Diego Hernán,Timana Peña Jimena Adriana

Abstract

Introduction − Making effort estimation as accurate and suitable for software development projects becomes a fundamental stage to favor its success, which is a difficult task, since the application of these techniques in constant changing agile development projects raises the need to evaluate different methods frequently.  Objectives− The objective of this study is to provide a state of the art on techniques of effort estimation in agile software development (ASD), performance evaluation and the drawbacks that arise in its application.  Method− A systematic mapping was developed involving the creation of research questions to provide a layout of this study, analysis of related words for the implementation of a search query to obtain related studies, application of exclusion, inclusion, and quality criteria to filter nonrelated studies and finally the organization and extraction of the necessary information from each study.   Results− 25 studies were selected; the main findings are: the most applied estimation techniques in agile contexts are: Estimation of Story Points (SP) followed by Planning Poker (PP) and Expert Judgment (EJ). The most frequent solutions supported in computational techniques such as: Naive Bayes, Regression Algorithms and Hybrid System; also, the performance evaluation measures Mean Magnitude of Relative Error (MMRE), Prediction Assessment (PRED) and Mean Absolute Error (MAE) have been found to be the most commonly used. Additionally, parameters such as feasibility, experience, and the delivery of expert knowledge, as well as the constant particularity and lack of data in the process of creating models to be applied to a limited number of environments are the challenges that arise the most when estimating software in agile software development (ASD)    Conclusions− It has been found there is an increase in the number of articles that address effort estimation in agile development, however, it becomes evident the need to improve the accuracy of the estimation by using estimation  techniques supported in machine learning  that have been shown to facilitate and improve the performance of this. 

Publisher

Corporation Universidad de la Costa, CUC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3