Synthesis of N4-Alkyl-5-azacytidines and Their Base-Pairing with Carbamoylguanidines - A Contribution to Explanation of the Mutagenicity of 2'-Deoxy-5-azacytidine

Author:

Pískala Alois,Hanna Naeem B.,Masojídková Milena,Otmar Miroslav,Fiedler Pavel,Ubik Karel

Abstract

A series of N4-alkyl-5-azacytidines 3a-3h were prepared by treatment of the 4-methoxy analogue 4 with the respective amines. In the case of propyl-, butyl-, sec-butyl-, benzyl- or furfurylamine, aggregates of azacytidines 3a-3e with their hydrolytic products 5a-5e were isolated. Similar aggregates were obtained with 1-methyl-5-azacytosine (6) and 2-(methylcarbamoyl)guanidine (7). Compound 7 was prepared by the reaction of guanidine with methyl isocyanate; the reaction of 2 or 3 equivalents gave the di- or tricarbamoyl derivatives 11 and 12, respectively. Cyclization of 7 and 11 with DMF dimethyl acetal afforded azacytosines 6 and 13, respectively. Aggregates of guanosine with 5-azacytosine nucleosides 1, 2 and 15 or of 5-aza-5,6-dihydrocytosine nucleosides 16 and 17 with 5-azacytidine (1) and its 2'-deoxy congener 2 have been prepared by co-crystallization of the respective pairs of nucleosides. The anomers of (deoxyribosylcarbamoyl)guanidine 20a and 20b have been prepared by hydrolysis of the deoxy nucleoside 2. An aggregate of the picrate (8a) of (ribosylcarbamoyl)guanidine 8 with cytidine (9) has been obtained by co-crystallization of both components. Reaction of the methoxy nucleoside 4 with tert-butylamine gave, by contrast to the above mentioned amines, the α-anomer of O-methylribosylisobiuret 22, which was cyclized by DMF dimethyl acetal to the α-anomer of N4,N4-dimethyl-5-azacytidine 24. The connection of the base-pairing ability of carbamoylguanidines with the mutagenicity of 2'-deoxy-5-azacytidine (2) as well as the mechanism of inhibition of DNA methyltransferase by this nucleoside analogue is discussed. In contrast to the unsubstituted 5-azacytidine (1) or its N4-methyl derivatives, none of the N4-alkyl derivatives exhibited any antibacterial or antitumor activity at 100 μg/ml or 10 μmol/l concentrations, respectively.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3