Abstract
Ab initio quantum-chemical calculations with inclusion of electron correlation significantly contributed to our understanding of molecular interactions of DNA and RNA bases. Some of the most important findings are introduced in the present overview: structures and energies of hydrogen bonded base pairs, nature of base stacking, interactions between metal cations and nucleobases, nonplanarity of isolated nucleobases and other monomer properties, tautomeric equilibria of nucleobases, out-of-plane hydrogen bonds and amino acceptor interactions. The role of selected molecular interactions in nucleic acids is discussed and representative examples where these interactions occur are given. Also, accuracy of density functional theory, semiempirical methods, distributed multipole analysis and empirical potentials is commented on. Special attention is given to our very recent reference calculations on base stacking and H-bonding. Finally, we briefly comment on the relationship between advanced ab initio quantum-chemical methods and large-scale explicit solvent molecular dynamics simulations of nucleic acids.
Publisher
Institute of Organic Chemistry & Biochemistry
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献