Electrogeneration of Conducting Poly(α-tetrathiophene). Effect of Solution Stirring and Detection of Linear Oligomers

Author:

Estrany Francesc,Oliver Ramon,García Esther,Gualba Esther,Cabot Pere-Lluís,Brillas Enric

Abstract

The anodic oxidation of α-tetrathiophene on Pt was studied in a 1.0 mM monomer solution in 0.1 M LiClO4 in 45:35:20 acetonitrile/ethanol/DMF. Three consecutive oxidation peaks were detected by cyclic voltammetry, along with a cathodic peak related to the reduction of electroactive polarons formed during the first anodic process. Uniform, adherent, insoluble and black polymer films were obtained by chronoamperometry at 1.000 V vs Ag|AgCl corresponding to the first oxidation-polymerization process. Stirring of monomer solution promotes the production of polymer, favoring the oxidation of polymer chains with the incorporation of more doping ClO4- ions and ion pairs of Li+ClO4- in their monomeric units. The conductivity of the polymer obtained under stirring was three orders of magnitude higher than that synthesized from a quiescent solution. The scanning electron microscopy images also showed much more uniform films under stirring. This behavior points to the existence of less crosslinking in the polymer and the production of longer linear chains when the solution is stirred. IR analysis of these materials confirmed the formation of crosslinked chains with predominance of β-β linkages. Short linear oligomers such as the dimer, trimer and tetramer were detected in all polymers by MALDI-TOF-MS, thus showing a radical polycondensation as initial electropolymerization mechanism. A larger proportion of linear oligomers is formed under solution stirring.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3