Abstract
Abstract. The evolution of composite component production has been driven by a constant quest for improvements in process efficiency, precision, and repeatability. The eventual transition from traditional hand layup to robotic layup represents a significant step in this evolution. The implementation of robotic layup systems has become increasingly prevalent in the manufacturing industry, particularly in the aerospace and automotive sectors, where lightweight, strength, and precision are mandatory requirements. Ideally, the goal is the development of processes where a highly precise robotic arm could automate the deposition of composite materials onto the mold, providing a certain reduction of human errors, and minimizing material waste and associated costs. In this context, this paper proposes a computational tool that is able to provide automatic layup planning for the robotic layup process. The implemented algorithm incorporates the knowledge of a professional laminator: it can automatically analyze a generic mold surface of complex shape, work out the correct strategies for lamination, and generate instructions for robot movements.
Publisher
Materials Research Forum LLC