Modelling ductile damage of a textured aluminum alloy based on a non-quadratic yield function

Author:

BRITO João P.

Abstract

Abstract. The development of more sophisticated constitutive models is essential for improving the reliability of metal forming process simulations. The main objective of this work is to employ a Gurson-type [1] porous criterion to assess the ductile damage distribution of a strongly textured AA5042-H2 sheet during a single-stage cup-drawing process. The anisotropy of the dense phase is described with the non-quadratic form of the CPB06ex2 [2] criterion using two linear transformations. In line with Gurson’s homogenization theory, the plastic behavior of the porous solid is described by an approximate macroscopic strain-rate potential (SRP) using the classical Rice and Tracey trial fields. The particularity of this implementation is that the macroscopic potentials are not evaluated via analytical functions, but by numerical integration of the local fields [3]. It is shown that such approach is viable from the computational standpoint and opens the door for materials with intricate plastic behavior to be modeled within the framework of porous media.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3