A New R35 and Fractal Joint Rock Typing Method Using MICP Analysis: A Case Study in Middle East Iraq

Author:

,Duan Guanghui,Zhong Zhiqi, ,Fu Meiyan, ,Xu Jiacheng, ,Deng Ya, ,Ling Can, ,Li Keran,

Abstract

Reservoir characterization in carbonate formations plays a crucial role in understanding the complex pore structures and permeability properties. While absolute pore-throat radius (APTR) and R35 have been widely accepted in pore-scale rock typing, they fall short of providing detailed pore-throat distribution (PTD) information. To address this limitation and enhance PTD indication during rock classification, we introduce a novel approach—the R35 and fractal joint rock typing method—incorporating a new parameter, Dn (fractal dimension). This method is developed based on the analysis of mercury injection capillary pressure (MICP) data obtained from 20 carbonate samples in the Middle East, specifically Iraq. We delve into the discussion of APTR and R35 methods, employing both PTD and thin-section images to gain comprehensive insights into rock typing. Our approach incorporates a whole curve fractal-based model to determine the fractal dimension, Dn. The analysis reveals that Dn in each R35 rock type exhibits a decreasing trend with higher Hg intrusion peaks and wider pore-throat radius, providing valuable information on the distribution of pores within the rock samples. Furthermore, we extend our analysis to include the surface fractal dimension, Ds, obtained through two-dimensional (2D) fractal analysis on typical pores in binary thin-section images. The consistent decreasing trend of Dn aligns with the findings from Ds analysis, underscoring the effectiveness of parameter Dn in capturing the intricate pore structures within carbonate formations. Our results suggest that parameter Dn has the potential to serve as a standalone criterion in rock typing, eliminating the need for pretyping by R35 or APTR. The versatility of Dn as an indicator of pore distribution and complexity underscores its significance in advancing our understanding of carbonate reservoirs. As a recommendation, further exploration through additional fractal-based analyses is encouraged to solidify the role of parameter Dn in becoming a pivotal factor in the evolving field of rock typing.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3