Machine-Learning-Enabled Automatic Sonic Shear Processing

Author:

Liang Lin, ,Lei Ting,

Abstract

Flexural-dipole sonic logging has been widely used as the primary method to measure formation shear slowness because it can be applied in both fast and slow formations and can resolve azimuthal anisotropy. The flexural-dipole waveforms are dispersive borehole-guided waves that are sensitive to borehole geometry, mud, and formation properties, and therefore the processing techniques need to honor the physical dispersive signatures to obtain an accurate estimation of shear slowness. Traditional processing techniques are based on either a model-dependent method, in which an isotropic model is used as a reference to compensate for the dispersion effect, or a model-independent method, which optimizes nonphysical parameters to fit a simplified model to the field dispersion data extracted in the slowness-frequency domain. Many methods often require inputs, such as mud slowness, frequency bandpass filter, or an initial guess of formation shear. Consequently, these methods often fail to interpret the dispersion signature properly when those inputs are inaccurate or when the waveform quality is poor due to downhole logging noises. The users must manually tune the processing parameters and/or choose different methods as a workaround, which causes extra time and effort to obtain the result, hence imposes a significant challenge for automating sonic shear processing. We developed a physics-driven, machine-learning-based method for enhancing the interpretation of borehole sonic dipole data for wireline logging in an openhole scenario. A synthetic database is generated from an anisotropic root-finding, mode-search routine and used to train a neural network model as an accurate and efficient proxy. This neural network model can be used for real-time sensitivity analysis and performing inversion to the measured sonic dipole dispersion data to estimate relevant model parameters with associated uncertainties. We introduce how this trained model can be used to enhance the labeling and extraction of the dipole dispersion mode. We developed a new method that outperforms previous model-dependent and model-independent approaches because the new method introduces a mechanism to constrain the solution with physics that also has the capability to incorporate more complicated physical dispersion signatures. This new method does not rely on a good initial guess on mud slowness and formation shear slowness, nor any tuning parameter. This leads to significant progress toward fully automated sonic interpretation. The algorithm has been tested on field data for challenging borehole and geological conditions.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

Subject

Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3