REAL-TIME 3D IMAGING OF COMPLEX TURBIDITIC RESERVOIR ARCHITECTURE

Author:

Sinha Supriya, ,Riofrio Karol,Walmsley Arthur,Clegg Nigel,Sviland-Østre Stig,Gueze Nicolas, , , , ,

Abstract

Siliciclastic turbidite lobes and channels are known to exhibit varying degrees of architectural complexity. Understanding the elements that contribute to this complexity is the key to optimizing drilling targets, completions designs and long-term production. Several methods for 3D reservoir modelling based on seismic and electromagnetic (EM) data are available that are often complemented with outcrop, core and well log data studies. This paper explores an ultra-deep 3D EM inversion process during real-time drilling and how it can enhance the reservoir understanding beyond the existing approaches. The new generation of ultra-deep triaxial EM logging tools provide full-tensor, multi-component data with large depths of detection, allowing a range of geophysical inversion processing techniques to be implemented. A Gauss-Newton-based 3D inversion using semi-structured meshing was adapted to support real-time inversion of ultra-deep EM data while drilling. This 3D processing methodology provides more accurate imaging of the 3D architectural elements of the reservoir compared to earlier independent up-down, right-left imaging using 1D and 2D processing methods. This technology was trialed in multiple wells in the Heimdal Formation, a siliciclastic Palaeocene reservoir in the North Sea. The Heimdal Fm. sandstones are generally considered to be of excellent reservoir quality, deposited through many turbiditic pulses of variable energy. The presence of thin intra-reservoir shales, fine-grained sands, heterolithic zones and calcite-cemented intervals add architectural complexity to the reservoir and subsequently impacts the fluid flow within the sands. These features are responsible for heterogeneities that create tortuosity in the reservoir. When combined with more than a decade of production, they have caused significant localized movement of oil-water and gas-oil contacts. Ultra-deep 3D EM measurements have sensitivity to both rock and fluid properties within the EM field volume. They can, therefore, be applied to mapping both the internal reservoir structure and the oil-water contacts in the field. The enhanced imaging provided by the 3D inversion technology has allowed the interpretation of what appears to be laterally stacked turbidite channel fill deposits within a cross-axial amalgamated reservoir section. Accurate imaging of these elements has provided strong evidence of this depositional mechanism for the first time and added structural control in an area with little or no seismic signal.

Publisher

Society of Petrophysicists and Well Log Analysts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3