A New Workflow for Assessment of Fluid Components and Pore Volumes From 2D NMR Measurements in Formations With Complex Mineralogy and Pore Structure

Author:

Posenato Garcia Artur, ,Mallan Robert,Sun Boquin, ,

Abstract

It is challenging to reliably identify fluid components and estimate their saturations in formations with complex lithology, complex pore structure, or varying wettability conditions. Common practices for assessing fluid saturations rely on the interpretation of resistivity measurements. These techniques require model calibration, which is time consuming/expensive and can only differentiate conductive and nonconductive fluids. Interpretation of 2D NMR maps provides a viable alternative for identifying fluid components and fluid volumes. However, conventional techniques for the interpretation of 2D NMR rely on cutoffs in the T1-T2 or D-T2 maps. The application of cutoffs is prone to inaccuracies when fluid-component relaxation responses overlap. To address these shortcomings, we introduce a new workflow for identifying/tracking fluid components and estimating their volumes from the interpretation of 2D NMR measurements. We developed a workflow that approximates 2D NMR maps with a superposition of 2D Gaussian distributions. The algorithm automatically determines the optimum number of Gaussian distributions and their corresponding properties (i.e., amplitudes, variances, and means). Next, a clustering technique is implemented to the dataspace containing the Gaussian distribution parameters obtained for the entire logged interval. Each Gaussian is assigned to a cluster corresponding to different pore/fluid components. We then calculate the volumes under the Gaussian distributions corresponding to each cluster at each depth. The volumes associated with each cluster translate directly into the pore volumes corresponding to the different fluid components (e.g., heavy/light hydrocarbon, bound/free water) at each depth. A highlighted contribution of this work is that, in contrast to the alternative petrophysical interpretation techniques for fluid characterization, the introduced workflow does not require calibration efforts, user-defined cutoffs, or proprietary data sets. Furthermore, approximating 2D NMR data with a superposition of Gaussian distributions improves the accuracy of estimated pore volumes of fluid components with overlapping NMR responses. The clustering using the Gaussian distribution parameters as inputs enables depth tracking of different fluid components without making use of user-defined 2D cutoffs. Finally, the multidimensional nature of the introduced clustering provides the unique capability of identifying different fluid components with 2D NMR response located in the same range of coordinates in a T1-T2 map. We successfully verified the reliability and robustness of the new workflow for enhancing petrophysical interpretation in two organic-rich mudrock formations with complex mineralogy and pore structure.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

Subject

Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3