Assessment of cellulose nanofibers from bolaina blanca wood obtained at three shaft heights

Author:

Arango-Perez Sergio Andre,Gonzales-Mora Héctor Enrique,Ponce-Alvarez Silvia Patricia,Gutarra-Espinoza Abel Aurelio,Cárdenas-Oscanoa Aldo Joao

Abstract

This study evaluated cellulose nanofibers from bolaina blanca wood (Guazuma crinita) obtained at different heights of the longitudinal axis of the shaft of trees from a three-and-a-half-year-old plantation. The wood was subjected to pulping, bleaching and subsequent mechanical milling using a Changsha Samy XYQM-2L planetary ball mill to obtain cellulose nanofibers. The product was characterised using analytical techniques: scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy. Additionally, the degree of polymerisation was determined. The effect of longitudinal position on cellulose nanofibers characteristics was evaluated by comparing means using ANOVA and Kruskal–Wallis statistical tests. The yield of cellulose nanofibers production from the high, middle and basal sections was 32,1 %, 33,6 % and 31 %, respectively. The obtained cellulose nanofibers exhibited a significantly larger diameter for the high zone (84 nm) compared with the middle (75 nm) and basal (69 nm) zones; the length remained above the micrometre range. With respect to degree of polymerisation, a decrease was evidenced with respect to the increase in shaft height; the basal zone exhibited a degree of polymerisation of 300, a significantly higher value than the middle and high zones, which exhibited degree of polymerisation of 249 and 211, respectively. The product showed typical cellulose type I polymorphism and crystallinity indexes of 76 %, 93 % and 96 % for the high, middle and basal sections, respectively. Regarding the thermostability of cellulose nanofibers, the maximum degradation rate of cellulose nanofibers occurred between 335 °C and 341 °C, with cellulose nanofibers from the basal area being the most stable. The adsorption of the methylene blue dye on cellulose nanofibers was evaluated; an efficiency > 60 % was found.

Publisher

Universidad del Bio Bio

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Chemical Engineering (miscellaneous),Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3