Comparison of the gene expression profiles of endometrial and trophoblastic cells in women with recurrent miscarriage: A bioinformatics approach

Author:

Ahmadi Kambiz,Reiisi Somayeh,Habibi Zahra

Abstract

Background: Recurrent miscarriage (RM) remains unsolved in > 50% of patients and causes physical and psychological problems in women without specific risk factors for miscarriage. For a successful pregnancy, acceptance of the endometrium and invasion of trophoblast cells into the endometrium is necessary. Objective: This study aimed to use computational analysis to identify key genes and related pathways in endometrial and trophoblast cells derived from RM samples. Materials and Methods: In this bioinformatics study, we explored the differential expression of genes in endometrial and trophoblast cells by analyzing the GSE165004 and GSE76862 datasets, respectively with the limma package in R software. Subsequently, overlapped genes between 2 datasets were selected, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. The overlapped genes were integrated to construct a protein-protein interaction network and hub genes selection. Results: We observed 41 overlapped genes between endometrial and trophoblast cells, and future analysis was accomplished in overlapped and nonoverlapped genes. Kyoto Encyclopedia of Genes and Genomes analysis indicated that overlapped genes were significantly enriched in the complement and coagulation cascades, pluripotency of stem cells, and synthesis and degradation of ketone bodies. Gene ontology analysis suggested that the genes were enriched in the cell cycle, apoptosis, and cell division. The top 10 genes included: IRS1, FGF2, MAPK6, MAPK1, MAPK3, MAPK8, MAPK9, PLK1, PRKACA, and PRKCA were identified from the PPI network. Conclusion: This study identified the key genes and potential molecular pathways underlying the development of RM. This could provide novel insights to determine the possible mechanisms and interventional strategies associated with miscarriage. Key words: Recurrent miscarriage, Transcriptome profile, Gene ontology, Bioinformatics.

Publisher

Knowledge E DMCC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3