Numerical Investigation on Thermal and Electrical Stress in Electric Vehicle Cabling Network

Author:

Mahipal Bukya ,Rajesh Kumar ,Akhilesh Mathur

Abstract

Global warming and an impending energy problem have compelled nations to become greener and cleaner. Worldwide, interest in electric vehicles (EVs) is growing as a result of rising gasoline prices and environmental concerns. The need for electrical components and cabling networks is expanding along with the demand for electrified vehicles. The complexity of vehicle electrical, electronics, and control circuits is also rising. There are many wire and cable performance issues in modern e-mobility, including limited space, vibration, high-temperature variation, unfriendly fluids, and rising data transmission requirements. Thus, it is important to study and evaluate the thermal and electrical stresses in the electric vehicles cabling network to avoid insulation failure, which causes fire accidents in the electric components of EVs. An EV's entire electrical system gets hotter, and insulation strength is affected by both temperature and the electrical field. The insulation system is one of the most important components in any electrified vehicle. From a design and protection perspective, the computation of electric potential distribution and electric field within and around the cables of electric vehicles is very important. The strong non-linear dependency of the electrical conductivity of the insulation material on prevailing electrical stress and temperature makes the field problem not only coupled but also non-linear. Finite Difference Numerical (FDM) is used for non-linear field computation. In this paper, different electric vehicle cabling network layouts were studied and listed the challenges. Chosen the high voltage cables of electric vehicles from the cabling network and numerically computed the conductivity, temperature, and electrical fields of cable.

Publisher

Akademia Baru Publishing

Subject

Fluid Flow and Transfer Processes

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A study of XLPE insulation failure in power cables under electromagnetic stress;Engineering Research Express;2024-09-01

2. Research on thermomechanical effects and influencing factors in high voltage cable under multiphysics field coupling;AIP Advances;2024-07-01

3. Cable Fixation Strategies for Automated Cable and Wire Harness Plugging in Electric Vehicle Manufacturing;2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS);2024-06-05

4. Thermo-electric modeling and analysis of lithium-ion battery pack for E-mobility;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-04-26

5. FPGA-Based VFF-RLS Algorithm for Battery Insulation Detection in Electric Vehicles;World Electric Vehicle Journal;2024-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3