The Effect of an Evaporative Cooler on the Thermal Performance of Passive Ventilation System Coupled with EAHE: An Experimental Investigation

Author:

Ghafouri Abbas ali,Jubear Abbas J.

Abstract

An experimental study of a two-storey structure with a passive ventilation system is conducted in August, with the severe summer environment of Kut, Iraq. The experimental model consists of a solar chimney combined with a hybrid cooling system comprised of an Earth-air heat exchanger and an evaporative cooler. Each storey has a size of 1 m3, while the dimensions of the vertical solar chimney were 3m height, 1m width and 0.3m depth. The dimensions of the evaporative cooler were (0.3 * 0.3 * 0.6) m3; it has a two-nozzle water spray system and a low-power fan with a speed of 0.8 m/s. The Earth-air heat exchanger was 17 m long, 10.2 cm in diameter and 3 m deep under each floor. Two instances were investigated with and without EV for two separate daytimes (2-8-2021 and (3-8-2021). The findings revealed that EV increases the relative humidity inside each storey and enhances the thermal comfort rate. Based on recorded data, the relative humidity rate ranged from 35% to 42%, contrasted to the exterior relative humidity, which did not surpass 13%. In addition, the EV assisted in lowering the indoor temperature of each storey by 4 °C. Finally, due to the high solar radiation at the Kut city location in Iraq, the passive ventilation rates for the solar chimney were satisfactory for both storeys.

Publisher

Wasit University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3