Investigating the impact of flow rate and moisture content for different concentration of liquid desiccant solution

Author:

Mahdy Hussain H.,Hassen Abdulsalam D. M.,Al-Azawy Mohammed Ghalib

Abstract

The desiccant air conditioning system consists of two processes, namely cooling and dehumidification, in which the air temperature and humidity are controlled in order to provide comfortable thermal conditions. A typical system includes a dehumidifier, indirect evaporative cooler, and regenerator. The desiccant is selected depending on its ability to absorb water vapor present in the air. In this study, calcium chloride solution was used as a desiccant for the desiccant solution regeneration process, and a flat plate solar collector was employed. Different variables, such as the primary air flow rate, desiccant flow rate, and the concentration of the desiccant solution, were changed during the experiments. The impact of these variables on the performance parameters of the desiccant system such as moisture removal rate, moisture efficiency, enthalpy efficiency, sensible heat ratio, and the mass transfer coefficient was studied. The obtained results revealed that as the solution concentration and the flow rate of primary air increase, the moisture removal rate, sensible heat ratio, and mass transfer coefficient increase. A particular value of inlet primary air flow rate (0.18Kg/s), an increase in the inlet concentration of calcium chloride solution from 0.85 to 0.95 leads to a rise in moisture removal rate, sensible heat ratio, and mass transfer coefficient of  (1.1 _1.65) g/s,  (0.18-0.25),  and  (0.01075-0.0123) m/s respectively. While at a certain inlet concentration of a desiccant solution (0.95), increasing the inlet primary air flow rate from 0.1Kg/s to 0.18Kg/s leads to an increase in the moisture removal rate, sensible heat ratio, and mass transfer coefficient o (0.94-1.26) g/s, (0.24-0.26), and(0.0038 -0.011) m/s respectively.

Publisher

Wasit University

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3