Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics

Author:

Mattison Lori K,Soong Richie,Diasio Robert B1

Affiliation:

1. Department of Pharmacology and Toxicology, Room 101, Volker Hall, University of Alabama at Birmingham, Birmingham, AL, 35294, USA

Abstract

A prominent example of the potential application of pharmacogenomics and pharmacogenetics to oncology is the study of dihydropyrimidine dehydrogenase (DPD) in 5-fluorouracil (5-FU) metabolism. 5-FU is currently one of the most widely administered chemotherapeutic agents used for the treatment of epithelial cancers. DPD is the rate-limiting enzyme in the catabolism and clearance of 5-FU. The observation of a familial linkage of DPD deficiency from a patient exhibiting 5-FU toxicity suggested a possible molecular basis for variations in 5-FU metabolism. Molecular studies have suggested there is a relationship between allelic variants in the DPYD gene (the gene that encodes DPD) and a deficiency in DPD activity, providing a potential pharmacogenetic basis for 5-FU toxicity. In the last decade, studies have correlated tumoral DPD activity with 5-FU response, suggesting it may be a useful pharmacogenomic marker of patient response to 5-FU-based chemotherapy. This article reviews the basis and discusses the challenges of pharmacogenetic and pharmacogenomic testing of DPD for the determination of 5-FU efficacy and toxicity.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3