SYNAPTIC MECHANISMS OF EPILEPSY: CONTEMPORARY VIEW

Author:

Mukhamedzyanov Ramil' Davletzyanovich1ORCID,Martynov Aleksandr Vladimirovich1ORCID

Affiliation:

1. Kazan State Medical University, Ministry of Health of the Russian Federation

Abstract

The purpose of the paper is to analyze possible mechanisms of ictal activity at the synaptic level in epilepsy. Materials and Methods. The search for literature sources was carried out in Pubmed, CyberLeninka, and Google Scholar. Results. The diversity of pathophysiological mechanisms of epilepsy makes it difficult to treat approximately one third of patients, whose ictal activity is not suppressed by traditional pharmacological agents. The increased glutamate effect may be a consequence of its increased concentration in the intercellular space due to impaired reuptake caused by dysfunction of the EAATs transporters. Excitatory influences can also be enhanced by reduced connexin 43 (Cx43) expression in the synaptic cleft and downregulation of Kir4.1 inward rectifying potassium channel, which increases the extracellular concentration of K+ and glutamate causing neuron hyperexcitability. Disturbances in neuronal, glial or neuronal-glial interactions have a similar effect. This is caused by malfunctioning of ionotropic or metabotropic receptors due to abnormal expression of astrocytic glutamate transporters and/or malfunction of neuronal or astrocytic enzymes. One of the proteins involved in epileptogenesis is aquaporin (AQP4). Altered AQP4 expression potentially affects potassium reuptake by Kir 4.1 and glutamate reuptake and reduces glutamate transporter EAAT2 expression. AQP4 can also interact with glutamate receptor mGluR5. Decreased GABAergic signaling may result from decreased numbers of GABAergic neurons in glial diseases and tumors. Besides, due to a decrease in plasmalemmal expression of the chloride cotransporter KCC2 and an increase in the expression of NKCC1 (Na-K-2Cl cotransporter), the intracellular concentration of CI– ions increases. As a result, GABA performs a depolarizing, excitatory role. Conclusion. The pathophysiological mechanisms of epilepsy may become a target in the development of new drugs with anticonvulsant effects.

Publisher

Ulyanovsk State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3