Changes in zooplankton biomass in the Bay of Quinte with the arrival of the mussels, Dreissena polymorpha and D. rostiformis bugensis, and the predatory cladoceran, Cercopagis pengoi: 1975 to 2008

Author:

Bowen Kelly L.1,Johannsson Ora E.1

Affiliation:

1. Fisheries and Oceans Canada, Great Lakes Laboratory for Fisheries and Aquatic Science, Burlington, ON, L7R 4A6 Canada

Abstract

Long term monitoring of Lake Ontario's Bay of Quinte provides the opportunity to examine the impact of dreissenid invasion on the zooplankton community. Weekly or biweekly zooplankton samples have been collected from 1975 to 2008 at 3 stations: Belleville (B), Hay Bay (HB), and Conway (C) along a trophic and depth gradient down the bay. Rotifers have been collected since 2000. Biomass estimates based on measured zooplankton lengths started in 1995. Archived seasonal composite samples prior to 1995 were reanalysed and biomass recalculated from length-weight equations to allow for comparable data in trend analysis. Mean May 1– October 6 zooplankton biomass was low from 1975 into the early 1980s and peaked between 1982–1983 and 1991. Biomass fell during the cold summer of 1992 associated with the Pinatubo eruption and was low after the invasion of dreissenid mussels. From 1979–1991 (after phosphorus control and prior to dreissenid invasion), biomass averaged 265, 253 and 84 mg m−3 at B, HB and C, respectively. Seasonal biomass of most zooplankton groups, as well as total biomass, was significantly lower at all stations after the dreissenid invasion. Cladocerans still dominated zooplankton biomass after the invasion, averaging 56% to 80% of the total. Cyclopoid numbers and biomass fell dramatically. After the invasion of  Cercopagis pengoi in 1999, calanoid and cyclopoid biomass at HB and C decreased by approximately 50%. Bosmina biomass did not change. Seasonal mean rotifer biomass over the 2000 to 2008 period was 1.9% to 4.4% of total zooplankton biomass. Reductions in zooplankton following dreissenid and C. pengoi invasions are thought to be caused by both direct predation of microzooplankton (e.g. nauplii) by mussels and copepods by C. pengoi (at C and HB), and competition between zooplankton and dreissenids for food resources.

Publisher

Michigan State University Press

Subject

Management, Monitoring, Policy and Law,Ecology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3