Improved Algorithms for Data-Gathering Time in Sensor Networks II: Ring, Tree, and Grid Topologies

Author:

Revah Yoram1,Segal Michael1

Affiliation:

1. Communication Systems Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract

We address the problem of gathering information in sensor webs consisting of sensors nodes, wherein a round of communication sensor nodes have messages to be sent to a distant central node (called the base station) over the shortest path. There is a wide range of data gathering applications like target and hazard detection, environmental monitoring, battlefield surveillance, etc. Consequently, efficient data collection solutions are needed to improve the performance of the network. In this article, we take into account the fact that interference can occur at the reception of a message at the receiver sensor. In order to save redundant retransmissions and energy, we assume a known distribution of sources (each node wants to transmit at most one packet) and one common destination. We provide a number of scheduling algorithms jointly minimizing both the completion time and the average packet delivery time. We define our network model using directional antennas and consider Ring, Tree, and Grid Network (and its generality) topologies. All our algorithms run in low-polynomial time.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Collection for Time-Critical Applications in the Low-Duty-Cycle Wireless Sensor Networks;International Journal of Distributed Sensor Networks;2015-08-01

2. Scheduling problems in transportation networks of line topology;Optimization Letters;2013-02-13

3. Scheduling of Vehicles in Transportation Networks;Lecture Notes in Computer Science;2012

4. Energy-Aware Distributed Intelligent Data Gathering Algorithm in Wireless Sensor Networks;International Journal of Distributed Sensor Networks;2011-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3