1. Alexandari, A. M., Kundaje, A., and Shrikumar, A. (2020), “Maximum Likelihood with Bias-Corrected Calibration is Hard-to-Beat at Label Shift Adaptation,” in Proceedings of the 37th International Conference on Machine Learning.
2. Azizzadenesheli K. Liu A. Yang F. and Anandkumar A. (2019) “Regularized Learning for Domain Adaptation Under Label Shifts ” arXiv preprint arXiv:1903.09734.
3. ℓ1-penalized quantile regression in high-dimensional sparse models
4. Least squares after model selection in high-dimensional sparse models
5. Bickel, P. J., Klaassen, J., Ritov, Y., and Wellner, J. A. (1993), Efficient and Adaptive Estimation for Semiparametric Models, Baltimore: Johns Hopkins University Press.