SwinD-Net: a lightweight segmentation network for laparoscopic liver segmentation

Author:

Ouyang Shuiming12,He Baochun12,Luo Huoling1,Jia Fucang123

Affiliation:

1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

2. Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China

3. Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China

Funder

National Natural Science Foundation of China

Research on the Evaluation Index System of Information Literacy Course Teaching Quality in Applied Undergraduate Universities

Guangdong Natural Science Foundation

the Shenzhen Key Basic Research Grant

the Zhuhai Science and Technology Program

the Shenzhen Basic Research Grant

Publisher

Informa UK Limited

Reference32 articles.

1. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation In International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS vol.9351. 2015. pp. 1–9.

2. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, et al. UNet++: a nested U-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, LNCS. vol. 11045; 2018. pp. 3–11.

3. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data

4. Oktay O Schlemper J Folgoc LL et al. Attention U-Net: learning where to look for the pancreas. arXiv preprint. arXiv:1804.03999. 2018.

5. Chen LC, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation In Proceedings of the European Conference on Computer Vision (ECCV). 2018. pp. 801–818.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3