Predictive analytics for water main breaks using spatiotemporal data
Author:
Affiliation:
1. Department of Systems Engineering and Operations Research, George Mason University, Fairfax, VA, USA
2. Data Sceince and Analytics Institute, University of Oklahoma, Norman, OK, USA
Funder
US National Science Foundation
Publisher
Informa UK Limited
Subject
Water Science and Technology,Geography, Planning and Development
Link
https://www.tandfonline.com/doi/pdf/10.1080/1573062X.2021.1893363
Reference41 articles.
1. Risk assessment and risk management: Review of recent advances on their foundation
2. Improving pipe failure predictions: Factors affecting pipe failure in drinking water networks
3. Statistical Modeling in Absence of System Specific Data: Exploratory Empirical Analysis for Prediction of Water Main Breaks
4. Chen, T. Y. J., J. A. Beekman, and S. D. Guikema. 2017. “Drinking Water Distribution Systems Asset Management: Statistical Modelling of Pipe Breaks.” In In Proc., Sessions of the Pipelines 2017: Conf. on Condition Assessment, Surveying, and Geomatics. Reston, VA: ASCE.
5. Prediction of water main failures with the spatial clustering of breaks
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A hybrid machine learning-based model for predicting failure of water mains under climatic variations: A Hong Kong case study;Tunnelling and Underground Space Technology;2024-10
2. Prediction of water–main failures and management of the associated risks using integrated predictive analytics approach;Safety and Reliability;2024-08
3. Efficacy of Tree-Based Models for Pipe Failure Prediction and Condition Assessment: A Comprehensive Review;Journal of Water Resources Planning and Management;2024-07
4. Water Supply Management Through an Innovative Dashboard Solution;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-06-24
5. A systematic review of optimization methods for recovery planning in cyber–physical infrastructure networks: Current state and future trends;Computers & Industrial Engineering;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3