Future-proofing geotechnics workflows: accelerating problem-solving with large language models

Author:

Wu Stephen12,Otake Yu3,Mizutani Daijiro3,Liu Chang1,Asano Kotaro3,Sato Nana3,Saito Taiga3,Baba Hidetoshi4,Fukunaga Yusuke5,Higo Yosuke4,Kamura Akiyoshi3,Kodama Shinnosuke6,Metoki Masataka3,Nakamura Tomoka3,Nakazato Yuto3,Shioi Akihiro7,Takenobu Masahiro8,Tsukioka Keigo9,Yoshikawa Ryo4

Affiliation:

1. Research Organization of Information and Systems, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan

2. Department of Statistical Science, The Graduate University for Advanced Studies, Tachikawa, Tokyo, Japan

3. Department of Civil Environmental Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan

4. Department of Urban Management, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan

5. Planning Department, Coastal Development Institute of Technology, Minato, Tokyo, Japan

6. Civil Engineering Group, Urban and Civil Project Department, Nikken Sekkei Ltd, Chiyoda, Tokyo, Japan

7. Disaster Prevention Solution Department, Kozo Keikaku Engineering Inc, Nakano, Tokyo, Japan

8. Port and Harbor Department, National Institute for Land and Infrastructure Management, Yokosuka, Japan

9. Railway Technical Research Institute, Kokubunji, Tokyo, Japan

Funder

Research Organization of Information and Systems

Publisher

Informa UK Limited

Reference51 articles.

1. Ahn Janice Rishu Verma Renze Lou Di Liu Rui Zhang and Wenpeng Yin. 2024. “Large Language Models for Mathematical Reasoning: Progresses and Challenges.” arXiv 2402.00157.

2. Sustainability and geotechnical engineering: perspectives and review

3. Bommasani Rishi Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein et al. 2022. “On the Opportunities and Risks of Foundation Models.” arXiv 2108.07258.

4. Building Information Modeling

5. Brown Tom Benjamin Mann Nick Ryder Melanie Subbiah Jared D. Kaplan Prafulla Dhariwal Arvind Neelakantan et al. 2020. “Language Models are Few-Shot Learners.” In Advances in Neural Information Processing Systems edited by H. Larochelle M. Ranzato R. Hadsell M.F. Balcan and H. Lin Vol. 33 1877–1901. Red Hook NY: Curran Associates Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3