Deep reinforcement learning for selecting demand forecast models to empower Industry 3.5 and an empirical study for a semiconductor component distributor
Author:
Affiliation:
1. Department of Industrial Engineering & Engineering Management, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
Publisher
Informa UK Limited
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Strategy and Management
Link
https://www.tandfonline.com/doi/pdf/10.1080/00207543.2020.1733125
Reference88 articles.
1. A neural network based linear ensemble framework for time series forecasting
2. Automatic identification of time series features for rule-based forecasting
3. Application of reinforcement learning to routing in distributed wireless networks: a review
4. Deep Reinforcement Learning: A Brief Survey
5. A new method to forecast intermittent demand in the presence of inventory obsolescence
Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Digital transformation in manufacturing industries: Effects of firm size, product innovation, and production type;Technological Forecasting and Social Change;2024-10
2. Semiconductor supply chain resilience and disruption: insights, mitigation, and future directions;International Journal of Production Research;2024-08-13
3. Improving Machine Learning Predictive Capacity for Supply Chain Optimization through Domain Adversarial Neural Networks;Big Data and Cognitive Computing;2024-07-28
4. Digital system for dynamic container loading with neural network-based memory exploiting hybrid genetic algorithm for carbon reduction;Computers & Industrial Engineering;2024-05
5. Artificial intelligence and prescriptive analytics for supply chain resilience: a systematic literature review and research agenda;International Journal of Production Research;2024-04-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3