Affiliation:
1. Department of Biochemical Science and Technology, Kagoshima University, Kagoshima, Japan
2. Animal Physiology and Nutrition Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
Abstract
Abstract
To investigate the intracellular signaling mechanisms by which clenbuterol reduces muscle protein degradation, we examined the phosphorylation level and intracellular localization of FOXO1 in the sartorius muscle of neonatal chicks. One-day-old chicks were given a single intraperitoneal injection of clenbuterol (0.1 mg/kg body weight). Three hours after injection, AKT protein was phosphorylated in the sartorius muscle by clenbuterol injection. Coincidentally, clenbuterol increased cytosolic level of phosphorylated FOXO1 protein, while it decreased nuclear level of FOXO1 protein in the sartorius muscle. Furthermore, clenbuterol decreased the expression of mRNAs for muscle-specific ubiquitin ligases (atrogin-1/MAFbx and MuRF1) in the sartorius muscle accompanied by decreased plasma 3-methylhistidine concentration, an index of muscle protein degradation, at 3 h after injection. These results suggested that, in the sartorius muscle of the chicks, clenbuterol changed the intracellular localization of phosphorylated FOXO1, and consequently decreased protein degradation via suppressing the expression of genes encoding muscle-specific ubiquitin ligases.
Funder
Japan Society for the Promotion of Science
Publisher
Oxford University Press (OUP)
Subject
Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献