A functional endonuclease Q exists in the bacterial domain: identification and characterization of endonuclease Q from Bacillus pumilus

Author:

Shiraishi Miyako123,Ishino Sonoko1,Cann Isaac4523,Ishino Yoshizumi123

Affiliation:

1. Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan

2. Institute for Universal Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

3. Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

4. Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

5. Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract

Abstract DNA base deamination occurs spontaneously under physiological conditions and is promoted by high temperature. Therefore, hyperthermophiles are expected to have efficient repair systems of the deaminated bases in their genomes. Endonuclease Q (EndoQ) was originally identified from the hyperthermophlic archaeon, Pyrococcus furiosus, as a hypoxanthine-specific endonuclease recently. Further biochemical analyses revealed that EndoQ also recognizes uracil, xanthine, and the AP site in DNA, and is probably involved in a specific repair process for damaged bases. Initial phylogenetic analysis showed that an EndoQ homolog is found only in the Thermococcales and some of the methanogens in Archaea, and is not present in most members of the domains Bacteria and Eukarya. A better understanding of the distribution of the EndoQ-mediated repair system is, therefore, of evolutionary interest. We showed here that an EndoQ-like polypeptide from Bacillus pumilus, belonging to the bacterial domain, is functional and has similar properties with the archaeal EndoQs.

Funder

Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3