Fatigue damage analysis for a floating offshore wind turbine mooring line using the artificial neural network approach
Author:
Affiliation:
1. Department of Naval Architecture and Ocean Engineering, Inha University, Incheon, Republic of Korea
Publisher
Informa UK Limited
Subject
Mechanical Engineering,Ocean Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/17445302.2016.1254522
Reference18 articles.
1. [ASTM] American Society of Testing Materials. 2005. ASTM standard practices for cycle counting in fatigue analysis. Pennsylvania: Annual book of ASTM standards, Vol. 3. p. 836–884. ASTM/E1049-1134.
2. Spectral methods for lifetime prediction under wide-band stationary random processes
3. Design of Mooring Lines of a Floating Offshore Wind Turbine in South Offshore Area of Jeju
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient fatigue damage estimation of offshore wind turbine foundation under wind-wave actions;Journal of Constructional Steel Research;2024-10
2. A deep learning approach based on domain generalization for mooring tension prediction in floating structures;Ocean Engineering;2024-08
3. Low-supervised domain-adversarial neural network for cross-domain mooring line failure detection;Applied Ocean Research;2024-08
4. A fully coupled dynamic water-mooring line system: Numerical implementation and applications;Ocean Engineering;2024-02
5. Study on Mooring Design of 15 MW Floating Wind Turbines in South China Sea;Journal of Marine Science and Engineering;2023-12-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3