Affiliation:
1. Department of Physics, National Institute of Technology Agartala, Agartala, Tripura, India
Abstract
Polycrystalline multiferroic nanocomposites with general formula xBaFe2O4 – (1 – x) ZnO (x = 0.2, 0.3, and 0.5) are prepared by chemical pyrophoric reaction method and solid-state route. The samples are characterized
by X-ray diffraction which indicates the formation of both the phases in the composites. The morphological analysis and elemental compositions have been identified by using field emission scanning electron microscope and energy-dispersive X-ray analysis techniques. These micrographs reveal
the particle sizes are in the nanometer dimension. The band gap of the nanocomposites is estimated employing UV-Vis spectroscopy. The DC electrical resistivity exhibits a metal-semiconductor transition for all the nanocompositions. Temperature-dependent AC conductivity of the nanocomposites
is found to obey the Jonscher’s power law. The room temperature multiferroic behavior of the nanocomposites is confirmed from the detailed magnetoelectric response studies. The coupling coefficient is obtained maximum for x = 0.5 compositions for both in transverse
and longitudinal mode due to the more ferrite content i.e., more magnetostrictive behaviour in the nanocompositions.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Control and Systems Engineering,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献