Stability of square-mean almost automorphic mild solutions to impulsive stochastic differential equations driven by G-Brownian motion
Author:
Affiliation:
1. School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, China
2. Department of Mathematics, Anhui Normal University, Wuhu, China
3. Department of Applied Mathematics, Bharathiar University, Coimbatore, India
Funder
National Natural Science Foundation of China
Publisher
Informa UK Limited
Subject
Computer Science Applications,Control and Systems Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/00207179.2019.1575527
Reference34 articles.
1. Existence of almost periodic solutions to some stochastic differential equations
2. Square-mean almost automorphic mild solutions to non-autonomous stochastic differential equations in Hilbert spaces
3. Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths
4. Fei, W. & Fei, C. (2013). Exponential stability for stochastic differential equations disturbed by G-Brownian motion. arXiv:1311.7311.
5. Square-mean almost automorphic solutions for some stochastic differential equations
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Besicovitch almost automorphic solutions in finite‐dimensional distributions to stochastic semilinear differential equations driven by both Brownian and fractional Brownian motions;Mathematical Methods in the Applied Sciences;2024-08-09
2. Forward uncertainty quantification in random differential equation systems with delta‐impulsive terms: Theoretical study and applications;Mathematical Methods in the Applied Sciences;2023-03-22
3. Qualitative Behaviour of Stochastic Integro-differential Equations with Random Impulses;Qualitative Theory of Dynamical Systems;2023-03-01
4. Practical exponential stability of stochastic delayed systems with G-Brownian motion via vector G-Lyapunov function;Mathematics and Computers in Simulation;2022-09
5. Stochastic Finite-Time Stability for Stochastic Nonlinear Systems with Stochastic Impulses;Symmetry;2022-04-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3