Development of a modified thermal humidity index and its application to human thermal comfort of urban vegetation patches

Author:

Zheng Xiaorou123,Zhang Na14,Wang Xin1

Affiliation:

1. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China

2. Center for Geo-spatial Information, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

3. Beidou Research Institute, South China Normal University, Foshan, China

4. Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China

Abstract

ABSTRACT Extremely hot environments can trigger serious health problems. To evaluate the effects of microclimate on thermal comfort, we proposed and validated a modified thermal humidity index (MTHI) that combined air temperature and relative humidity with land surface temperature (LST). MTHI was more sensitive to microclimate changes than the general thermal humidity index that includes only T and RH, and thus the thermal comfort could be better indicated. In an urban riparian buffer study, we estimated the temporal dynamics and spatial distribution of MTHI values for 47 vegetation patches and explored how structural characteristics of patches affect the thermal comfort. The results showed that planting could significantly reduce LST and MTHI. Vegetation patches with complex vertical structures had considerably higher thermal comfort than those with simple structures. Decreasing nearest distance to river or increasing plant abundance could reduce the thermal discomfort. There were significant differences in the structure characteristics between the patches with MTHI <70 and those with MTHI >70, implying the critical thresholds of variations in thermal comfort with patch structure. Given that people always feel uncomfortable during the daytime in July, optimizing the patch structure is essential to improve the microclimate regulation services of an urban landscape.

Funder

Beijing Natural Science Foundation

Chinese Academy of Sciences

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Management, Monitoring, Policy and Law,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3