Bilateral pulvinar signal intensity decrease on t2-weighted images in patients with aspartylglucosaminuria

Author:

Autti T.1,Lönnqvist T1,Joensuu R1

Affiliation:

1. Helsinki Medical Imaging Center, University of Helsinki, Helsinki, Finland Department of Child Neurology, Hospital for Children and Adolescents, University of Helsinki, Finland AstraZeneca R&D, Mölndal, Sweden

Abstract

Background: Aspartylglucosaminuria (AGU) is an autosomal recessive lysosomal disease caused by deficiency of aspartylglucosaminidase. A thalamic T2 signal intensity decrease is associated with lysosomal diseases. Purpose: To investigate thalamic signal intensity in AGU by performing a retrospective review of brain magnetic resonance (MR) imaging studies of AGU patients. Material and Methods: A total of 25 MR examinations were available for 11 patients aged between 3 and 32 years (four patients underwent bone marrow transplantation). Of these, 13 examinations were performed after bone marrow transplantation. Five patients had from two to six examinations, and six patients had one examination each. In every patient, the diagnosis of AGU was confirmed by blood and urine tests. Eighteen examinations were performed with a 1.0T imager including dual spin-echo T2 and proton density (PD) axial and coronal images, and 10 examinations also included T1-weighted images. Seven examinations were performed with a 1.5T imager including turbo spin-echo axial and coronal T2-weighted images and axial fluid-attenuated inversion recovery (FLAIR) images; three examinations included T1-weighted three-dimensional magnetization-prepared rapid acquisition gradient-echo (3D MPRAGE) images. The signal intensity of the thalamus and pulvinar in every sequence was compared to that of the putamina. Results: In AGU, thalamic alterations were first detectable on T2-weighted images (25 examinations in 11 patients) from the age of 3 years 6 months, showing decreased signal intensity in 21 of 24 examinations. T1-weighted images (13 examinations) showed slightly increased thalamic signal intensity in five out of seven examinations from the age of 7 years, and PD images (19 examinations) showed decreased signal intensity from the age of 16 years (three examinations). The pulvinar showed decreased signal intensity on spin-echo T2-weighted images for 14 of 18 examinations or on FLAIR sequences for seven of seven examinations from the age of 6 years and 6 months, both in patients with and without bone marrow transplantation, but no pulvinar alterations were observable on T1 and PD images. Conclusion: In AGU, the thalamus is affected. Pulvinar changes are visible only on T2-weighted images, and these may be the first changes reported in the group of lysosomal diseases.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3