Integration of Natural and Artificial Light on Energy Efficiency of the Mega Bank Makassar Tower Building

Author:

Ismail Isty Cahyani,Rahim Ramli,Hamzah Baharuddin

Abstract

One of the largest energy consumers in the world is buildings. The energy consumption comes from the lighting system. Energy use in buildings is generally 25% for lighting systems. The strategy used in building design is to reduce energy consumption while maintaining the best comfort in a building. The application of energy-saving concepts from the building sector is optimizing the lighting system by integrating natural and artificial lighting systems. This study aims to determine the light intensity in the integrated lighting system of natural and artificial manually and also to find out how much energy can be saved with the integrated lighting system manually. The research location is at the Mega Bank Makassar Tower Building. The research sample was selected by purposive sampling and the sixth floor was chosen as the research location. In this study, simulations were carried out using the DIAlux 4.13 program to integrate natural and artificial light and to calculate the amount of energy efficiency in the workspace. To obtain optimal light intensity and energy savings, a simulation was carried out by turning off half the light points in the workspace, especially the light points around the building openings. The simulation results show that the average integrated lighting quality meets the minimum lighting requirements and can save energy usage by up to 50%. Keywords: energy efficiency; integration lighting; workspace

Publisher

Center of Technology (COT)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Critical Review of Lighting Design and Asset Management Strategies. Illuminating Practices and Lessons Learned for Swedish Public Libraries;Journal of Physics: Conference Series;2023-12-01

2. Simulation of lighting system in the accommodation deck of a 750GT ro-ro ferry;THE PROCEEDINGS OF THE 4TH EPI INTERNATIONAL CONFERENCE ON SCIENCE AND ENGINEERING (EICSE) 2020;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3