Abstract
It is well known that the eigenvalues of any unitary matrix lie on the unit circle. The purpose of this paper is to prove that the eigenvalues of any matrix polynomial, with unitary coefficients, lie inside the annulus A_{1/2,2) := {z â C | 1/2 < |z| < 2}. The foundations of this result rely on an operator version of Roucheâs theorem and the intermediate value theorem.
Publisher
University of Wyoming Libraries
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献