Abstract
For $k=1,\ldots,K$, let $A_k$ and $B_k$ be positive semidefinite matrices such that, for each $k$, $A_k$ commutes with $B_k$. We show that, for any unitarily invariant norm, \[ |||\sum_{k=1}^K A_kB_k||| \le ||| (\sum_{k=1}^K A_k)\;(\sum_{k=1}^K B_k)|||. \] The $K=2$ case was recently conjectured by Hayajneh and Kittaneh and proven by them for the trace norm and the Hilbert-Schmidt norm. A simple application of this norm inequality answers a question by Bourin in the affirmative.
Publisher
University of Wyoming Libraries
Subject
Algebra and Number Theory
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献