Mesoscopic quantum thermo-mechanics: A new frontier of experimental physics

Author:

Collin E.1ORCID

Affiliation:

1. Institut Néel-CNRS UPR2940, 25 rue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France

Abstract

In the last decade, experimentalists have demonstrated their impressive ability to control mechanical modes within mesoscopic objects down to the quantum level: it is now possible to create mechanical Fock states, to entangle mechanical modes from distinct objects, and to store quantum information or transfer it from one quantum bit to another, among the many possibilities found in today's literature. Indeed, mechanics is quantum, very much like spins or electromagnetic degrees of freedom; and all of this is, in particular, referred to as a new engineering resource for quantum technologies. However, there is also much more beyond this utilitarian aspect: invoking the original discussions of Braginsky and Caves, where a quantum oscillator is thought of as a quantum detector for a classical field, namely, a gravitational wave, which is also a unique sensing capability for quantum fields. The subject of study is then the baths to which the mechanical mode is coupled to, let them be known or unknown in nature. This Perspective is about this new potentiality that addresses stochastic thermodynamics, potentially down to its quantum version, the search for a fundamental underlying (random) field postulated in recent theories that can be affiliated to the class of the wave-function collapse models, and more generally open questions of condensed matter like the actual nature of the elusive (and ubiquitous) two-level systems present within all mechanical objects. However, such research turns out to be much more demanding than the use of a few quantum mechanical modes: all the known baths have to be identified, experiments have to be conducted in-equilibrium, and the word “mechanics” needs to be justified by a real ability to move substantially the center-of-mass when a proper drive tone is applied to the system.

Funder

H2020 European Research Council

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3