Robustness of dynamic quantum control: Differential sensitivity bounds

Author:

O'Neil S. P.1ORCID,Weidner C. A.2ORCID,Jonckheere E. A.1ORCID,Langbein F. C.3ORCID,Schirmer S. G.4ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Southern California 1 , Los Angeles, California 90089, USA

2. Quantum Engineering Technology Laboratories, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol 2 , Bristol BS8 1FD, United Kingdom

3. School of Computer Science and Informatics, Cardiff University 4 , Cardiff CF24 4AG, United Kingdom

4. Faculty of Science and Engineering, Physics, Swansea University 5 , Swansea SA2 8PP, United Kingdom

Abstract

Dynamic control via optimized, piecewise-constant pulses is a common paradigm for open-loop control to implement quantum gates. While numerous methods exist for the synthesis of such controls, there are many open questions regarding the robustness of the resulting control schemes in the presence of model uncertainty; unlike in classical control, there are generally no analytical guarantees on the control performance with respect to inexact modeling of the system. In this paper, a new robustness measure based on the differential sensitivity of the gate fidelity error to parametric (structured) uncertainties is introduced, and bounds on the differential sensitivity to parametric uncertainties are used to establish performance guarantees for optimal controllers for a variety of quantum gate types, system sizes, and control implementations. Specifically, it is shown how a maximum allowable perturbation over a set of Hamiltonian uncertainties that guarantees a given fidelity error can be reliably computed. This measure of robustness is inversely proportional to the upper bound on the differential sensitivity of the fidelity error evaluated under nominal operating conditions. Finally, the results show that the nominal fidelity error and differential sensitivity upper bound are positively correlated across a wide range of problems and control implementations, suggesting that in the high-fidelity control regime, rather than there being a trade-off between fidelity and robustness, higher nominal gate fidelities are positively correlated with increased robustness of the controls in the presence of parametric uncertainties.

Funder

Supercomputing Wales

Engineering and Physical Sciences Research Council

US Army Advanced Civil Schooling (ACS) Program.

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3