Electron transport mechanisms in amorphous zinc oxysulfide thin films

Author:

Tsuchii Masato1,Chen Zhen1,Hirose Yasushi12,Hasegawa Tetsuya1

Affiliation:

1. Department of Chemistry, Graduate School of Science, The University of Tokyo 1 , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2. Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 2 , 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

Abstract

Amorphous mixed-anion semiconductors (AMASs) such as amorphous zinc oxynitride and amorphous zinc oxysulfide (a-ZnOS) have attracted attention as rare-metal-free amorphous semiconductors that exhibit electron mobility comparable to or greater than the electron mobilities of typical amorphous oxide semiconductors (AOSs), including amorphous In–Ga–Zn–O (a-IGZO). A characteristic feature of AMASs is that their conduction-band minimum (CBM) mainly consists of s-orbitals of the single cation, in contrast to conventional AOSs, whose CBM is composed of s-orbitals of multiple cations. This unique band structure suggests that the potential of carrier electrons in AMASs exhibits less spatial fluctuation than that of carrier electrons in AOSs. In this study, we analyzed the temperature dependence of the electron transport properties of a-ZnOS thin films using the random barrier model to evaluate the potential barrier height and its spatial variation. The analyses revealed that the barrier height of a-ZnOS is comparable to that of a-IGZO. This result was attributed to the large covalent nature of Zn–S bonds strongly influencing the potential at the CBM through the antibonding interaction.

Funder

Japan Society for the Promotion of Science London

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electron transport mechanisms in amorphous zinc oxysulfide thin films;Journal of Vacuum Science & Technology B;2023-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3