Synthesis of short-wave infrared Ge1−ySny semiconductors directly on Si(100) via ultralow temperature molecular routes for monolithic integration applications

Author:

Xu Chi1ORCID,Hu Ting2,Zhang Aixin2,Ringwala Dhruve A.2,Menéndez José1ORCID,Kouvetakis John2

Affiliation:

1. Department of Physics, Arizona State University, Tempe, Arizona 85287-1504

2. School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604

Abstract

We report the synthesis of Ge1− ySn y films containing 6%–13% Sn directly on Si(100) for monolithic integration applications, circumventing the use of conventional Ge-buffer layers. The films are produced in a gas source molecular epitaxy chamber at ultralow temperatures of 185–210 °C and a pressure of 10−5 Torr by the reactions of pure vapor Ge4H10 and SnD4 or SnH4 without carrier gases. Very small amounts of Si, incorporated via the Si4H10 precursor, can be used to improve the structural properties. All samples were characterized by XRD, RBS, IR-ellipsometry, AFM, and TEM, indicating the formation of monocrystalline single-phase films with relatively low defectivity and flat surfaces. A notable highlight is that the residual strains of the alloy layers are much lower compared to those grown on Ge buffers and can be further reduced by rapid thermal annealing without decomposition, indicating that growth on bare silicon should produce bulklike, high Sn content alloys that cannot be accessed using Ge buffers. N-type analogs of the above samples doped with phosphorus were also produced using P(SiH3)3 as the in situ dopant precursor. The results collectively illustrate the potential of our chemistry-based method to generate good quality Ge1− ySn y layers directly on large area Si wafers bypassing Ge buffers that typically lead to complications such as multiple hetero-interfaces and epitaxial breakdown at high Sn concentrations.

Funder

National Science Foundation

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3