Affiliation:
1. Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831
Abstract
In this tutorial review, we discuss how the choice of upconversion pulse shape in broadband vibrational sum-frequency generation (SFG) spectrometer design impacts the chemical or physical insights one can obtain from a set of measurements. A time-domain picture of a vibrational coherence being mapped by a second optical field is described and the implications of how this mapping, or upconversion process, takes place are given in the context of several popular and emerging approaches found in the literature. Emphasis is placed on broadband frequency-domain measurements, where the choice of upconversion pulse enhances or limits the information contained in the SFG spectrum. We conclude with an outline for a flexible approach to SFG upconversion using pulse-shaping methods and a simple guide to design and optimize the associated instrumentation.
Funder
U.S. Department of Energy
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Materials Science,Biomaterials,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献